- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Arrieta-Perez, Rodinson R (1)
-
Evans, Paul G. (1)
-
Exley, Jason (1)
-
Hernandez-Maldonado, Arturo J. (1)
-
Marks, Samuel D. (1)
-
Riascos-Rodriguez, Karina (1)
-
Yakovenko, Andrey (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Flexible metal-organic frameworks (MOF) can show exceptional selectivity and capacity for adsorption of CO2. The incorporation of CO2 into flexible MOFs that have Cu2+ coordination centers and organic pillar ligands is accompanied by a distortion of the framework lattice arising from chemical interactions between these components and CO2 molecules. CO2 adsorption yields a reproducible lattice expansion that is enabled by the rotation of the pillar ligands. The structures of Cu2(pzdc)2(bpy) and Cu2(pzdc)2(bpe), CPL-2 and CPL-5, were evaluated using in situ synchrotron x-ray powder diffraction at room temperature at CO2 gas pressures up to 50 atm. The structural parameters exhibit hysteresis between pressurization and depressurization. The pore volume within CPL-2 and CPL-5 increases at elevated CO2 pressure due to a combination of the pillar ligand rotation and the overall expansion of the lattice. Volumetric CO2 adsorption measurements up to 50 atm reveal adsorption behavior consistent with the structural results, including a rapid uptake of CO2 at low pressure, saturation above 20 atm, and hysteresis evident as a retention of CO2 during depressurization. A significantly greater CO2 uptake is observed in CPL-5 in comparison with predictions based on CO2 pressure-induced expansion of the pore volume available for adsorption, indicating that the flexibility of the CPL structures is a key factor in enhancing adsorption capacity.more » « less
An official website of the United States government
