skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hernandez-Maldonado, Arturo J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flexible metal-organic frameworks (MOF) can show exceptional selectivity and capacity for adsorption of CO2. The incorporation of CO2 into flexible MOFs that have Cu2+ coordination centers and organic pillar ligands is accompanied by a distortion of the framework lattice arising from chemical interactions between these components and CO2 molecules. CO2 adsorption yields a reproducible lattice expansion that is enabled by the rotation of the pillar ligands. The structures of Cu2(pzdc)2(bpy) and Cu2(pzdc)2(bpe), CPL-2 and CPL-5, were evaluated using in situ synchrotron x-ray powder diffraction at room temperature at CO2 gas pressures up to 50 atm. The structural parameters exhibit hysteresis between pressurization and depressurization. The pore volume within CPL-2 and CPL-5 increases at elevated CO2 pressure due to a combination of the pillar ligand rotation and the overall expansion of the lattice. Volumetric CO2 adsorption measurements up to 50 atm reveal adsorption behavior consistent with the structural results, including a rapid uptake of CO2 at low pressure, saturation above 20 atm, and hysteresis evident as a retention of CO2 during depressurization. A significantly greater CO2 uptake is observed in CPL-5 in comparison with predictions based on CO2 pressure-induced expansion of the pore volume available for adsorption, indicating that the flexibility of the CPL structures is a key factor in enhancing adsorption capacity. 
    more » « less